Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    SOURCE DEPENDENT VARIATION IN HYDROXYL RADICAL PRODUCTION BY AIRBORNE PARTICULATE MATTER AND THE IMPACT ON BEAS-2B AND JB6 CELLS

    Thumbnail
    View/Open
    umi-umd-4389.pdf (2.298Mb)
    No. of downloads: 6513

    Date
    2007-04-30
    Author
    Alaghmand, Marjan
    Advisor
    Blough, Neil V
    Metadata
    Show full item record
    Abstract
    Numerous studies have shown an association between increased levels of particulate matter (PM) and the exacerbation of lung diseases. The exact means by which PM produces these effects remain unclear. Generation of reactive oxygen species such as the hydroxyl radical (OH), is one of the hypothesized mechanisms. However, the importance OH of production by PM remains uncertain due to a lack of sensitive and selective methods for its determination. In this work, a highly-sensitive fluorescence-based technique was employed to quantify the magnitude of .OH generated by a wide range of airborne particulate matter. The generated .OH was measured in the presence and absence of biological electron donor. Little or no production of .OH was observed in the absence of the added electron donor. For some but not all particles, .OH production was increased substantially when a biological electron donor was present. No detectable .OH was produced by kaolinite or silica. The mechanism(s) of .OH generation by airborne particulate matter were investigated. The presence of dioxygen, hydrogen peroxide, superoxide and metal chelators significantly affected .OH production by the particles. The results indicate that metals and organic constituents are involved in .OH production by particles and occur through both homogeneous and heterogeneous reactions. The effect of different airborne particles on .OH generation in the presence of two different cell lines, lung epithelial cells (BEAS-2b) and mouse epidermal cells (JB6) were investigated. In addition, two different toxicological methods were employed to investigate cell viability in the presence of different airborne particles. Based on our results, some .OH production was observed in the presence of these cell lines when exposed to diesel particulate matter and urban dust, but rates of cell death did not correlate with the .OH production rate. Further, silica particles, which exhibited no evidence of .OH production, produced the most rapid cell death. On the other hand, both cell death and hydroxyl radical formation were dramatically enhanced when an external biological reductant, NADPH, was added to a suspension of cells and urban dust. In this situation, the high flux of .OH is the likely factor causing cell death.
    URI
    http://hdl.handle.net/1903/6894
    Collections
    • Chemistry & Biochemistry Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility