Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    SELF-FORCE AND NOISE-KERNEL IN CURVED SPACE-TIME USING QUASI-LOCAL EXPANSION METHODS

    Thumbnail
    View/Open
    umi-umd-4341.pdf (542.4Kb)
    No. of downloads: 1673

    Date
    2007-04-29
    Author
    Eftekharzadeh, Ardeshir
    Advisor
    Hu, Bei-Lok B
    Metadata
    Show full item record
    Abstract
    We find a quasi-local expansion for the tail term of the Green's function for a particle with scalar charge moving outside the event horizon of a black hole of mass M. To do that we use a WKB-like ansatz for the mode functions and we solve the resulted differential equation by iteration. We then sum the mode contributions using Plana sum rule. The fact that we find the tail term as an analytic expression is important. We then use our expressions to calculate the self-force exerted upon a particle of scalar charge that has been held at rest from infinite past to some time after which it moves on a general geodesic of the space-time. We perform this computation first for the radial path of a particle released from rest and then generalize the method for a particle launched on a general geodesic. We then turn to computing the noise kernel. The problem we are primarily concerned with is that of a massless, conformally coupled scalar field in the optical Schwarzschild (the ultrastatic spacetime conformal to the Schwarzschild black hole). In contrast to previous work done on this topic, we keep the two points separate, and as a result work with non-renormalized Wightman functions. We give an expression in terms of an expansion in coordinate separation and conclude with an outlook.
    URI
    http://hdl.handle.net/1903/6852
    Collections
    • Physics Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility