Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    The role of dehalorespiring bacteria in the reductive dechlorination of polychlorinated biphenyls in Baltimore harbor sediment microcosms

    Thumbnail
    View/Open
    umi-umd-4199.pdf (8.733Mb)
    No. of downloads: 535

    Date
    2007-03-29
    Author
    Fagervold, Sonja Kristine
    Advisor
    Sowers, Kevin R
    Metadata
    Show full item record
    Abstract
    Baltimore Harbor sediment microcosms were incubated with the 12 most predominant congeners in Aroclor 1260 and their intermediate products to identify the major dechlorination pathways. Most congeners were dechlorinated in the meta position, although some dechlorination in the para and ortho positions was observed. The major dechlorination products were tetrachlorinated biphenyls with unflanked chlorines. Specific dechlorination rates of parent and intermediate PCB congeners were determined to identify the rate limiting reactions. To identify the microorganisms responsible for the dechlorination pathways, I developed PCR primers specific for the 16S rRNA genes of known PCB dehalogenating bacteria. These PCR primers were used in conjunction with DGGE to selectively identify the microorganisms that catalyzed each dechlorination reaction. Only three phylotypes were identified that catalyze the dechlorination of Aroclor 1260, and the selective activities of these phylotypes were determined. Phylotype DEH10 had high sequence similarity to Dehalococcoides spp., while phylotype SF1 had high sequence similarity to the o-17/DF-1 group of PCB dechlorinating bacteria. The third phylotype had 100% sequence similarity to the ortho-dechlorinating bacterium o-17 described previously from Baltimore Harbor sediments. Most dechlorination reactions for all three phylotypes were growth-linked, indicating that PCB-impacted environments have the potential to sustain populations of PCB dechlorinating organisms. To investigate whether bioaugmentation would be feasible for bioremediation of PCB contaminated sites, Baltimore Harbor sediment microcosms were supplemented with known dechlorinators and their effects on PCBs dechlorination patterns determined. The addition of different dechlorinators resulted in different dechlorination patterns. Finally, novel putative reductive dehalogenases were identified from the PCB dechlorinating bacterium DF-1 using degenerate PCR primers. Comparative sequence analyses indicated that they had high sequence similarity to both confirmed and putative dehalogenases from several Dehalococcoides species. In conclusion, microorganisms that can dechlorinate Aroclor 1260 have been identified for the first time and dechlorination of congener mixtures was shown to occur by the growth-linked complementary activities of bacterial consortia within the Chloroflexi. Demonstration that bioaugmentation with these organisms can influence rates and pathways of dechlorination, combined with the development of molecular assay for monitoring their fate, provide potentially valuable tools for the development of bioremedial strategies for PCB contaminated sediments.
    URI
    http://hdl.handle.net/1903/6723
    Collections
    • Biology Theses and Dissertations
    • MEES Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility