Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • A. James Clark School of Engineering
    • Institute for Systems Research Technical Reports
    • View Item
    •   DRUM
    • A. James Clark School of Engineering
    • Institute for Systems Research Technical Reports
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A strong zero-one law for connectivity in one-dimensional geometric random graphs with non-vanishing densities

    Thumbnail
    View/Open
    TR_2007-8.pdf (163.8Kb)
    No. of downloads: 598

    Date
    2007
    Author
    Han, Guang
    Makowski, Armand M.
    Advisor
    Makowski, Armand M.
    Metadata
    Show full item record
    Abstract
    We consider the geometric random graph where n points are distributed independently on the unit interval [0,1] according to some probability distribution function F. Two nodes communicate with each other if their distance is less than some transmission range. When F admits a continuous density f which is strictly positive on [0,1], we show that the property of graph connectivity exhibits a strong critical threshold and we identify it. This is achieved by generalizing a limit result on maximal spacings due to Levy for the uniform distribution.
    URI
    http://hdl.handle.net/1903/6624
    Collections
    • Institute for Systems Research Technical Reports

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility