Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • College of Computer, Mathematical & Natural Sciences
    • Computer Science
    • Technical Reports from UMIACS
    • View Item
    •   DRUM
    • College of Computer, Mathematical & Natural Sciences
    • Computer Science
    • Technical Reports from UMIACS
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Stable Encoding of Large Finite-State Automata in Recurrent Neural Networks with Sigmoid Discriminants

    Thumbnail
    View/Open
    CS-TR-3337.ps (277.3Kb)
    No. of downloads: 212

    Auto-generated copy of CS-TR-3337.ps (247.8Kb)
    No. of downloads: 844

    Date
    1998-10-15
    Author
    Omlin, Christian W.
    Giles, C. Lee
    Metadata
    Show full item record
    Abstract
    We propose an algorithm for encoding deterministic finite-state automata (DFAs) in second-order recurrent neural networks with sigmoidal discriminant function and we prove that the languages accepted by the constructed network and the DFA are identical. The desired finite-state network dynamics is achieved by programming a small subset of all weights. A worst case analysis reveals a relationship between the weight strength and the maximum allowed network size which guarantees finite-state behavior of the constructed network. We illustrate the method by encoding random DFAs with 10, 100, and 1,000 states. While the theory predicts that the weight strength scales with the DFA size, we find the weight strength to be almost constant for all the experiments. These results can be explained by noting that the generated DFAs represent average cases. We empirically demonstrate the existence of extreme DFAs for which the weight strength scales with DFA size. (Also cross-referenced as UMIACS-TR-94-101)
    URI
    http://hdl.handle.net/1903/660
    Collections
    • Technical Reports from UMIACS
    • Technical Reports of the Computer Science Department

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility