Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • A. James Clark School of Engineering
    • Institute for Systems Research Technical Reports
    • View Item
    •   DRUM
    • A. James Clark School of Engineering
    • Institute for Systems Research Technical Reports
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Fault-Tolerant Extension of Hypercube Algorithm for Efficient, Robust Group Communications in MANETs

    Thumbnail
    View/Open
    TR_2005-108.pdf (171.5Kb)
    No. of downloads: 509

    Date
    2005
    Author
    Striki, Maria
    Baras, John S.
    Metadata
    Show full item record
    Abstract
    Securing multicast communications in Mobile Ad Hoc Networks (MANETs) has become one of the most challenging research directions in the areas of wireless networking and security. MANETs are emerging as the desired environment for an increasing number of commercial and military applications, addressing also an increasing number of users. Security on the other hand, is becoming an indispensable requirement of our modern life for all these applications. However, the limitations of the dynamic, infrastructure-less nature of MANETs impose major difficulties in establishing a secure framework suitable for group communications. The design of efficient key management (KM) schemes for MANET is of paramount importance, since the performance of the KM functions (key generation, entity authentication, key distribution/agreement) imposes an upper limit on the efficiency and scalability of the whole secure group communication system. In this work, we contribute towards efficient, robust and scalable, secure group communications for MANETs, by extending an existing key agreement (KA) scheme (where all parties contribute equally to group key generation) ypercube - to tolerate multiple member failures with low cost, through its integration with a novel adaptively proactive algorithm. We assume that the participating users have already been authenticated via some underlying mechanism and we focus on the design and analysis of a fault-tolerant Hypercube, with the aim to contribute to the robustness and efficiency of Octopus-based schemes (an efficient group of KA protocols for MANETs using Hypercube as backbone). We compare our algorithm with the existing approach, and we evaluate the results of our analysis. Through our analysis and simulation results we demonstrate how the new Hypercube algorithm enhances the robustness of the Octopus schemes maintaining their feasibility in MANETs at the same time. <p> Key terms: Key Management, Key Agreement, Hypercube Protocol, Fault-Tolerance, Octopus Schemes, Elliptic Curves Cryptography
    URI
    http://hdl.handle.net/1903/6574
    Collections
    • Institute for Systems Research Technical Reports

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility