Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • A. James Clark School of Engineering
    • Institute for Systems Research Technical Reports
    • View Item
    •   DRUM
    • A. James Clark School of Engineering
    • Institute for Systems Research Technical Reports
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Very sharp transitions in one-dimensional MANETs

    Thumbnail
    View/Open
    TR_2005-104.pdf (131.4Kb)
    No. of downloads: 672

    Date
    2005
    Author
    Han, Guang
    Makowski, Armand M.
    Advisor
    Makowski, Armand M.
    Metadata
    Show full item record
    Abstract
    We investigate how quickly phase transitions can occur in one-dimensional geometric random graph models of MANETs. In the case of graph connectivity, we show that the transition width behaves like 1/n (when the number n of users is large), a significant improvement over general asymptotic bounds given recently by Goel et al. for monotone graph properties. We also discuss a similar result for the property that there exists no isolated user in the network. The asymptotic results are validated by numerical computations. Finally we outline how the approach sed here could be applied in higher dimensions and or other graph properties.
    URI
    http://hdl.handle.net/1903/6573
    Collections
    • Institute for Systems Research Technical Reports

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility