Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • A. James Clark School of Engineering
    • Institute for Systems Research Technical Reports
    • View Item
    •   DRUM
    • A. James Clark School of Engineering
    • Institute for Systems Research Technical Reports
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Distributed On-Line Schedule Adaptation for Balanced Slot Allocation in Bluetooth Scatternets and other Wireless Ad-Hoc Network Architectures

    Thumbnail
    View/Open
    TR_2002-24.pdf (314.4Kb)
    No. of downloads: 373

    Date
    2002
    Author
    Tassiulas, Leandros
    Salonidis, Theodoros
    Metadata
    Show full item record
    Abstract
    In this paper we propose an algorithm for design and on the fly modification of the schedule of an ad-hoc wireless network in order to provide fair service guarantees under topological changes. The primary objective is to derive a distributed coordination method for schedule construction and modification in Bluetooth scatternets. The algorithm proposed here has wider applicability, to any wireless ad-hoc network that operates under a schedule where the transmissions at each slot are explicitly specified over a time period of length T. <p>First we introduce a fluid model of the system where the conflict avoidance requirements of neighboring links are relaxed while the aspect of local channel sharing is captured. In that model we propose an algorithm where the nodes asynchronously re-adjust the rates allocated to their adjacent links based only on local information. We prove that from any initial condition the algorithm finds the max-min fair rate allocation in the fluid model. Hence if the iteration is performed constantly the rate allocation will track the optimal even in regimes of constant topology changes. <p>Then we consider the slotted system and propose a modification method that applies directly on the slotted schedule, emulating the effect of the rate re-adjusment iteration of the fluid model. Through extensive experiments in networks with fixed and time varying topologies we show that the latter algorithm achieves balanced rate allocation in the actual slotted system that are very close to the max-min fair rates. The experiments show also that the algorithm is very robust on topology variations, with very good tracking properties of the max-min fair rate allocation.
    URI
    http://hdl.handle.net/1903/6308
    Collections
    • Institute for Systems Research Technical Reports

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility