Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • A. James Clark School of Engineering
    • Institute for Systems Research Technical Reports
    • View Item
    •   DRUM
    • A. James Clark School of Engineering
    • Institute for Systems Research Technical Reports
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Multi-time Scale Markov Decision Processes

    Thumbnail
    View/Open
    TR_2002-6.pdf (436.6Kb)
    No. of downloads: 874

    Date
    2002
    Author
    Chang, Hyeong Soo
    Fard, Pedram
    Marcus, Steven I.
    Shayman, Mark
    Advisor
    Marcus, Steven I.
    Shayman, Mark
    Metadata
    Show full item record
    Abstract
    This paper proposes a simple analytical model called M time-scale MarkovDecision Process (MMDP) for hierarchically structured sequential decision making processes, where decisions in each level in the M-level hierarchy are made in M different time-scales. <p>In this model, the state space and the control space ofeach level in the hierarchy are non-overlapping with those of the other levels, respectively, and the hierarchy is structured in a "pyramid" sense such that a decision made at level m (slower time-scale) state and/or the state will affect the evolutionary decision making process of the lower level m+1 (faster time-scale) until a new decision is made at the higher level but the lower level decisions themselves do not affect the higher level's transition dynamics. The performance produced by the lower level's decisions will affect the higher level's decisions.<p>A hierarchical objective function is defined such that the finite-horizon value of following a (nonstationary) policy at the level m+1 over a decision epoch of the level m plus an immediate reward at the level m is the single step reward for the level m decision making process. From this we define "multi-level optimal value function" and derive "multi-level optimality equation."<p>We discuss how to solve MMDPs exactly or approximately and also study heuristic on-line methods to solve MMDPs. Finally, we give some example control problems that can be modeled as MMDPs.
    URI
    http://hdl.handle.net/1903/6259
    Collections
    • Institute for Systems Research Technical Reports

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility