Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • A. James Clark School of Engineering
    • Institute for Systems Research Technical Reports
    • View Item
    •   DRUM
    • A. James Clark School of Engineering
    • Institute for Systems Research Technical Reports
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Proximity Awareness and Ad Hoc Network Establishment in Bluetooth

    Thumbnail
    View/Open
    TR_2001-10.pdf (154.8Kb)
    No. of downloads: 1382

    Date
    2001
    Author
    Salonidis, Theodoros
    Bhagwat, Pravin
    Tassiulas, Leandros
    LaMaire, Richard
    Metadata
    Show full item record
    Abstract
    In recent years, wireless ad hoc networks have been a growing area of research. While there has been considerable research on the topic of routing in such networks, the topic of topology creation has not received due attention. This is because almost all ad hoc networks to date have been built on top of a single channel, broadcast-based wireless media, suchas 802.11 or IR LANs. For such networks the distance relationship between the nodes implicitly (and uniquely) determines the topology of the ad hoc network.<p>Bluetooth is a promising new wireless technology that enables portable devices to form short-range wireless ad hoc networks and is based on a frequency hopping physical layer. This fact implies that hosts are not able to communicate unless they have previously discovered each other by synchronizing their frequency hopping patterns. Thus, even if all nodes are within direct communication range of each other, only those nodes which are synchronized with the transmitter can hear the transmission. <p>To support any-to-any communication, nodes must be synchronized so that the pairs of nodes (which can communicate with each other) together form a connected graph.<p>Using Bluetooth as an example, this paper first provides deeper insights into the issue to link establishment in frequency hopping wireless systems. It then introduces the Bluetooth Topology Costruction Protocol (BTCP), an asynchronous distributed protocol for constructing scatternets which starts with nodes that have no knowledge of their surroundings and terminates with the formation of a connected network satisfying all connectivity constraints posed by the Bluetooth technology.<p> To the best of our knowledge, the work presented in this paper is the first attempt at building Bluetooth scatternets using distributed logic and is quite "practical" in the sense that it can be implemented using the communication primitives offered by the Bluetooth 1.0 specifications.
    URI
    http://hdl.handle.net/1903/6194
    Collections
    • Institute for Systems Research Technical Reports

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility