Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • A. James Clark School of Engineering
    • Institute for Systems Research Technical Reports
    • View Item
    •   DRUM
    • A. James Clark School of Engineering
    • Institute for Systems Research Technical Reports
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Geometric Algorithm for Multi-Part Milling Cutter Selection

    Thumbnail
    View/Open
    TR_2000-42.pdf (468.9Kb)
    No. of downloads: 955

    Date
    2000
    Author
    Yao, Zhiyang
    Gupta, Satyandra K.
    Nau, Dana S.
    Metadata
    Show full item record
    Abstract
    Mass customization results in smaller batch sizes in manufacturing that require large numbers of setup and tool changes. The traditional process planning that generates plans for one part at a time is no longer applicable. <p>In this paper, we propose the idea of process planning for small batch manufacturing, i.e., we simultaneously consider multiple parts and exploit opportunities for sharing manufacturing resources such that the process plan will be optimized over the entire set of parts. In particular, we discuss a geometric algorithm for multiple part cutter selection in 2-1/2D milling operations. <p>We define the 2-1/2D milling operations as covering the target region without intersecting with the obstruction region. This definition allows us to handle the open edge problem. Based on this definition, we first discuss the lower and upper bond of cutter sizes that are feasible for given parts. Then we introduce the geometric algorithm to find the coverable area for a given cutter. Following that, we discuss the approach of considering cutter loading time and changing time in multiple cutter selection for multiple parts. We represent the cutter selection problem as shortest path problem and use Dijkstra's algorithm to solve it. By using this algorithm, a set of cutters is selected to achieve the optimum machining cost for multiple parts. <p>Our research illustrates the multiple parts process planning approach that is suitable for small batch manufacturing. At the same time, the algorithm given in this paper clarifies the 2-1/2D milling problem and can also help in cutter path planning problem.
    URI
    http://hdl.handle.net/1903/6139
    Collections
    • Institute for Systems Research Technical Reports

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility