Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • A. James Clark School of Engineering
    • Institute for Systems Research Technical Reports
    • View Item
    •   DRUM
    • A. James Clark School of Engineering
    • Institute for Systems Research Technical Reports
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Approximate Matrix Diagonalization for Use in Distributed Control Networks

    Thumbnail
    View/Open
    PhD_99-7.pdf (1.238Mb)
    No. of downloads: 1128

    Date
    1999
    Author
    Kantor, George A.
    Advisor
    Krishnaprasad, P.S.
    Metadata
    Show full item record
    Abstract
    Distributed control networks are rapidly emerging as aviable and important alternative to centralized control. In a typical distributed control network, a number of spatially distributed nodescomposed of "smart" sensors and actuators are used to take measurements and apply control inputs to some physical plant. The nodes have local processing power and the ability to communicate with the other nodes via a network. The challenge is to compute and implement a feedback law for the resulting MIMO system in a distributed manner on the network.<p>Our approach to this problem is based on plant diagonalization.To do this, we search for basis transformations for the vector of outputs coming from the sensors and the vector of inputs applied to the actuators so that, in the new bases, the MIMOsystem becomes a collection of decoupled SISO systems.This formulation provides a number of advantages for the synthesis and implementation of a feedback control law,particularly for systems where the number of inputs and outputs is large. <p>Of course, in order for this idea to be feasible,the required basis transformations must have properties which allow them to be implemented on a distributed control network. Namely, they must be computed in a distributed manner which respects the spatial distribution of the data(to reduce communication overhead) and takes advantage of the massive parallel processing capability of the network (to reduce computation time). <p>In this thesis, we present some tools which can be used to find suitable transforms which achieve "approximate"plant diagonalization. We begin by showing how to search the large collection of orthogonal transforms which are contained in the wavelet packet to find the one which most nearly, or approximately, diagonalizes a given real valued matrix.Wavelet packet transforms admit a natural distributed implementation,making them suitable for use on a control network.We then introduce a class of linear operators called recursive orthogonal transforms (ROTs) which we have developed specifically for the purpose of signal processing on distributed control networks. <p>We show how to use ROTs to approximately diagonalize fixed real and complex matricesas well as transfer function matrices which exhibit a spatial invariance property. Numerical examples of allproposed diagonalization methods are presented and discussed.
    URI
    http://hdl.handle.net/1903/6118
    Collections
    • Institute for Systems Research Technical Reports

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility