Show simple item record

dc.contributor.authorAdomaitis, Raymond A.en_US
dc.contributor.authorLin, Yi-hungen_US
dc.date.accessioned2007-05-23T10:06:58Z
dc.date.available2007-05-23T10:06:58Z
dc.date.issued1999en_US
dc.identifier.urihttp://hdl.handle.net/1903/6008
dc.description.abstractWe present a computational method for solving a class of boundary-value problemsin Sturm-Liouville form. The algorithms are based on global polynomialcollocation methods and produce discrete representationsof the eigenfunctions. Error control is performed by evaluating theeigenvalue problem residuals generated when the eigenfunctions are interpolatedto a finer discretization grid; eigenfunctions thatproduce residuals exceeding an infinity-norm bound are discarded.Because the computational approach involves the generationof quadrature weights and discrete differentiation operations, our computationalmethods provide a convenient framework for solving boundary-value problemsby eigenfunction expansion and other projection methods.en_US
dc.format.extent445290 bytes
dc.format.mimetypeapplication/pdf
dc.language.isoen_USen_US
dc.relation.ispartofseriesISR; TR 1999-1en_US
dc.subjectchemical process controlen_US
dc.subjectmathematical modelingen_US
dc.subjectsimulationen_US
dc.subjectdistributed parameter systemsen_US
dc.subjectlinear systemsen_US
dc.subjectIntelligent Control Systemsen_US
dc.titleA Collocation/Quadrature-Based Sturm-Liouville Problem Solveren_US
dc.typeTechnical Reporten_US
dc.contributor.departmentISRen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record