Show simple item record

Large Deviations for Partial Sum Processes Over Finite Intervals

dc.contributor.authorBanege, Lionelen_US
dc.contributor.authorMakowski, Armand M.en_US
dc.description.abstractWith any sequence {xn, n = ﯱ, ﯲ, ...} of IRp -valued random variables, we associate the partial sum processes {XTN(.)}$ which take value, in the space $(D[0,T]^p, au_0)$ of, right- continuous functions $[0,T] ightarrow R^p$ with left-hand, limits equipped with Skorohod's $J_1$ topology.<P>Furthermore, in an attempt to capture the past of the sequence, we introduce the negative partial sum processes ${ X_n^{T,-}(cdot),; n=z }$ defined by [ X_n^{T,-}(t)(omega) ~ equiv ~ left{ a{ll} ds {1 over n} {sum_{i=1-ceiling{nt}}^{0} x_i(omega)} & mbox{if} quad ceiling{nt} geq 1 \ 0 & mbox{otherwise} ea ight., quad t in [0,T], quad omega in Omega .<P>] These processes take value in the space $(D_l[0,T]^p, au_0)$ of, left- continuous functions $[0,T] ightarrow R^p$ with right-hand, limits also equipped with the Skorohod's $J_1$ topology. This paper explores some of the issues associated with, transfering the LDP for the family ${X_n^1 (cdot),~n=z}$ in $(D[0,1]^p, au_0)$ to the families ${X_n^{T}(cdot), ; n=z}$ in $(D[0,T]^p, au_0)$, ${X_n^{T,-}(cdot), ; n=z}$ in $(D_l[0,T]^p, au_0)$ and ${(X_n^T(cdot), X_n^{T,-}(cdot)), ; n=z}$ in $(D[0,T]^p, au_0) x (D_l[0,T]^p, au_0)$ for arbitrary $T>0$; the last two types of transfers require, stationarity of the underlying sequence ${x_n, ; n=pmz}$. The motivation for this work can be found in the study of, large deviations properties for general single server queues, and more specifically, in the derivation of the effective bandwidth, of its output process, all discussed in a companion paper. In a significant departure from the situation under the uniform topology, such transfers are not automatic under the Skorohod topology, as additional continuity properties are required on the elements of, the effective domain of the rate function $I_X$ of the LDP, for ${X_n^1(cdot),~n=z}$ in $(D[0,1]^p, au_0)$.<P>However, when the rate function $I_X$ is of the usual integral form, the transfers are automatic, and the new rate functions assume, very simple forms suggesting that from the perspective, of large deviations, the past of the underlying stationary process, behaves {it as if} it were independent of its future.<P>======================================================= ===========en_US
dc.format.extent1157835 bytes
dc.relation.ispartofseriesISR; TR 1997-38en_US
dc.subjectIntelligent Signal Processing en_US
dc.subjectCommunications Systemsen_US
dc.titleLarge Deviations for Partial Sum Processes Over Finite Intervalsen_US
dc.typeTechnical Reporten_US

Files in this item


This item appears in the following Collection(s)

Show simple item record