Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • A. James Clark School of Engineering
    • Institute for Systems Research Technical Reports
    • View Item
    •   DRUM
    • A. James Clark School of Engineering
    • Institute for Systems Research Technical Reports
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Absolute Stability Theory, Theory, and State-Space Verification of Frequency-Domain Conditions: Connections and Implications for Computation

    Thumbnail
    View/Open
    TR_97-23.pdf (1.197Mb)
    No. of downloads: 565

    Date
    1997
    Author
    Chou, Y.S.
    Tits, A.L.
    Balakrishnan, V.
    Metadata
    Show full item record
    Abstract
    The main contribution of the paper is to show the equivalence between the following two approaches for obtaining sufficient conditions for the robust stability of systems with structured uncertainties: (i) apply the classical absolute stability theory with multipliers; (ii) use the modern theory, specifically, the upper bound obtained by Fan, Tits and Doyle [IEEE TAC, Vol. 36, 25-38]. In particular, the relationship between the stability multipliers used in absolute stability theory and the scaling matrices used in the cited reference is explicitly characterized. The development hinges on the derivation of certain properties of a parameterized family of complex LMIs (linear matrix inequalities), a result of independent interest. The derivation also suggests a general computational framework for checking the feasibility of a broad class of frequency- dependent conditions, and in particular, yields a sequence of computable ﲭixed- -norm upper bounds , defined with guaranteed convergence from above to the supremum over frequency of the aforementioned upper bound.
    URI
    http://hdl.handle.net/1903/5854
    Collections
    • Institute for Systems Research Technical Reports

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility