Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • A. James Clark School of Engineering
    • Institute for Systems Research Technical Reports
    • View Item
    •   DRUM
    • A. James Clark School of Engineering
    • Institute for Systems Research Technical Reports
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Automated Network Fault Management

    Thumbnail
    View/Open
    MS_96-14.pdf (321.5Kb)
    No. of downloads: 4324

    Date
    1996
    Author
    Viswanathan, P.
    Metadata
    Show full item record
    Abstract
    With the recent growth of telecommunication networks, fault management has gained much importance. Since it is difficult for humans to manage large networks, automation of many of these functions has attracted much attention. Some of the ideas proposed for automating such functions include the use of artificial intelligence techniques. Neural help to analyze large volumes of numerical data. Expert systems help to analyze observed symptoms and identify the cause using a rule-based approach. However, research in artificial intelligence has shown that when either of these two methods is used alone, several weaknesses are observed in the resulting system. Thus, some other methodology would be required for tackling such large problems.<P>In this thesis, an approach involving the use of a hybrid system involving both neural networks and expert systems for performing automated network fault management is investigated. Data networks using the X.25 protocol are considered. A minimum cost routing scheme is used for re-routing future calls given the occurrence of a fault. A method for partitioning the data (obtained from the X.25 network) between the neural network and the expert system is suggested. Radial basis function networks are used as the neural network architecture for performing fault classification using performance data. Queries are provided for the expert system to determine the type of fault that occurred using the results of the neural network, together with alarms, SNMP traps, and X.25 SNMP statistics.
    URI
    http://hdl.handle.net/1903/5836
    Collections
    • Institute for Systems Research Technical Reports

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility