Time-Varying simultaneous stabilization, Part II. Finite families of nonlinear systems

View/ Open
Date
1996Author
Ho-Mock-Qai, Bertina
Dayawansa, Wijesuriya P.
Metadata
Show full item recordAbstract
In this paper, we derive sufficient conditions for the existence of a continuous time-varying feedback law that simultaneously locally or globally asymptotically stabilizes a finite family of nonlinear systems. We then focus on a class of pairs of nonlinear homogeneous systems, and by using the previous sufficient conditions, we establish their asymptotic stabilizability by means of time-varying feedback.
Collections
Related items
Showing items related by title, author, creator and subject.
-
Control of Large Actuator Arrays Using Pattern-Forming Systems
Justh, Eric W. (1998)Pattern-forming systems are used to model many diverse phenomena from biology,chemistry and physics. These systems of differential equations havethe property that as a bifurcation (or control) parameter passes through ... -
Analysis of a complex activator-inhibitor equation
Justh, Eric W.; Krishnaprasad, Perinkulam S. (1999)Basic properties of solutions and a Lyapunov functionalare presented for a complex activator-inhibitor equation witha cubic nonlinearity.Potential applications include control of coupled-oscillator arrays(for quasi-optical ... -
Modeling and Control of Dynamical Effects due to Impact on Flexible Structures
Wei, Q. (1994)In the first part of this dissertation, we consider modeling and approximation of impact dynamics on flexible structures. A nonlinear model is developed through Hertz law of impact in conjunction with the dynamic equation ...