Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • A. James Clark School of Engineering
    • Institute for Systems Research Technical Reports
    • View Item
    •   DRUM
    • A. James Clark School of Engineering
    • Institute for Systems Research Technical Reports
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Algorithm-Based Low-Power Transform Coding Architectures- Part II: Logarithmic Complexity, Unified Architecture, and Finite- Precision Analysis

    Thumbnail
    View/Open
    TR_95-33.pdf (1.007Mb)
    No. of downloads: 496

    Date
    1995
    Author
    Wu, A-Y.
    Liu, K.J. Ray
    Metadata
    Show full item record
    Abstract
    In the companion paper, we addressed the low-power DCT/IDCT VLSI architectures of linear complexity increase based on the multirate approach. In this paper, we will discuss other aspects of the low-power design. Firstly, we consider the design of low- power architectures that can lower the power consumption at only O(logM) increase in hardware complexity. Next, we will extend the low-power DCT design to other orthogonal transforms such as Modulated Lapped Transform (MLT) and Extended Lapped Transform (ELT). A unified programmable IIR low-power transform module, which can perform most of the existing discrete sinusoidal transforms, is also proposed. Finally, we perform the finite- precision analysis of the DCT architecture under the normal and multirate operations. In VLSI design, the assignment of the system wordlength will directly affect the total switching events and routing capacities, hence the power consumption. Using the analytical results, we can choose the optimal wordlength for each DCT channel under required signal-to-noise ratio (SNR) constraint. The material presented in this paper, together with the multirate architectures in the companion paper, provides a framework for the algorithm-based low-power transform coding kernel design.
    URI
    http://hdl.handle.net/1903/5621
    Collections
    • Institute for Systems Research Technical Reports

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility