On the Quadratic Stability of Constrained Model Predictive Control

Loading...
Thumbnail Image

Files

TR_94-7.pdf (1016.75 KB)
No. of downloads: 449

Publication or External Link

Date

1994

Advisor

Citation

DRUM DOI

Abstract

Analytic and numerical methods are developed in this paper for the analysis of the quadratic stability of Constrained Model Predictive Control (CMPC). According to the CMPC algorithm, each term of the closed-form of control law corresponding to an active constraint situation can be decomposed to have an uncertainty block, which is time varying over the control period. By analytic method, if a quadratic Lyapunov function can be found for the CMPC closed-loop system with uncertainty blocks in the feedback control law by solving a Riccati type equation, then the control system is quadratic stable. Since no rigorous solving method has been found, this Riccati type equation is solved by a trial-and- error method in this paper. A numerical method that does not solve the Riccati type equation, the Linear Matrix Inequality (LMI) technique, was found useful in solving this quadratic stability problem. Several examples are given to show the CMPC quadratic stability analysis results. It is also noticeable that the quadratic stability implies a similarity to a contraction.

Notes

Rights