Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • A. James Clark School of Engineering
    • Institute for Systems Research Technical Reports
    • View Item
    •   DRUM
    • A. James Clark School of Engineering
    • Institute for Systems Research Technical Reports
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Full Custom VLSI Implementation of Time-Recursive 2-D DCT/IDCT Chip

    Thumbnail
    View/Open
    MS_93-23.pdf (2.872Mb)
    No. of downloads: 1942

    Date
    1993
    Author
    Srinivasan, V.
    Advisor
    Liu, K.J.R.
    Metadata
    Show full item record
    Abstract
    Discrete Cosine Transform (DCT) based compression techniques play an important role in today's digital applications such as high definition television (HDTV) and teleconferencing which require high speed transmission of digital video signals. In this thesis, a high-performance VLSI implementation of a DSP chip which computes the two-dimensional discrete cosine transform and its inverse (2-D DCT/IDCT) is presented. The chip is based on the fully-pipelined time recursive IIR structure and employs a highly modular and hierarchical design strategy. Architectural model simulations are performed for determining system parameters required to achieve a high-speed and high-performance implementation. Based on these simulations, ROM and internal bus precision are chosen to ensure a minimum PSNR of 40 dB which is required for most digital imaging applications. High speed design is obtained by using distributed arithmetic to achieve fast multiplication through table lookups. A two-phase nonoverlapping clock is employed to perform computations in both phases, resulting in twice the throughput. Various submodules like ROM lookup tables. adders, half-latches, delay-units and multiplexors are implemented. Timing simulations of critical path modules indicate a clock frequency of 50 MHz corresponding to a data rate of 400 Mb/s. The chip dimensions are 24550 l x 27094 l and its area is 240 mm2. The chip has been submitted for fabrication in 1.2 CMOS N-well double-metal single-poly technology.
    URI
    http://hdl.handle.net/1903/5466
    Collections
    • Institute for Systems Research Technical Reports

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility