Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • A. James Clark School of Engineering
    • Institute for Systems Research Technical Reports
    • View Item
    •   DRUM
    • A. James Clark School of Engineering
    • Institute for Systems Research Technical Reports
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    User's Guide for FSQP Version 3.0c: A FORTRAN Code for Solving Constrained Nonlinear (Minimax) Optimization Problems, Generating Iterates Satisfying All Inequality and Linear Constraints

    Thumbnail
    View/Open
    TR_92-107.pdf (1.476Mb)
    No. of downloads: 1606

    Date
    1992
    Author
    Zhou, J.L.
    Tits, A.L.
    Metadata
    Show full item record
    Abstract
    FSQP 3.0c is a set of FORTRAN subroutines for the minimization of the maximum of a set of smooth objective functions (possibly a single one) subject to general smooth constraints. If the initial guess provided by the user is infeasible for some inequality constraint or some linear equality constraint, FSQP first generates a feasible point for these constraints; subsequently the successive iterates generated by FSQP all satisfy these constraints. Nonlinear equality constraints are turned into inequality constraints (to be satisfied by all iterates) and the maximum of the objective functions is replaced by an exact penalty function which penalizes nonlinear equality constraint violations only. The user has the option of either requiring that the (modified) objective function decrease at each iteration after feasibility for nonlinear inequality and linear constraints has been reached (monotone line search), or requiring a decrease within at most four iterations (nonmonotone line search). He/She must provide subroutines that define the objective functions and constraint functions and may either provide subroutines to compute the gradients of these functions or require that FSQP estimate them by forward finite differences.<P>FSQP 3.0c implements two algorithms based on Sequential Quadratic Programming (SQP), modified so as to generate feasible iterates. In the first one (monotone line search), a certain Armijo type arc search is used with the property that the step of one is eventually accepted, a requirement for superlinear convergence. In the second one the same effect is achieved by means of a (nonmonotone) search along a straight line. The merit function used in both searches is the maximum of the objective functions if there is no nonlinear equality constraint.
    URI
    http://hdl.handle.net/1903/5288
    Collections
    • Institute for Systems Research Technical Reports

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility