Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • A. James Clark School of Engineering
    • Institute for Systems Research Technical Reports
    • View Item
    •   DRUM
    • A. James Clark School of Engineering
    • Institute for Systems Research Technical Reports
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Fast Recursive Estimation of System Order and Parameters for Adaptive Control and IIR Filtering

    Thumbnail
    View/Open
    PhD_91-10.pdf (8.460Mb)
    No. of downloads: 410

    Date
    1991
    Author
    Pan, J-Q.
    Advisor
    Levine, W.S.
    Metadata
    Show full item record
    Abstract
    In this dissertation, simultaneous on-line estimation of system order and parameters is studied. The key features are the direct exploitation of the Toeplitz structure in a Toeplitz submatrix system (of linear equations), the theoretical martingale analysis and systematic simulation study of estimation of ARX system order and parameters, and the stability study of IIR filters.<P>The fundamental Levinson-Durbin algorithm is generalized and consequently a similar fast algorithm is developed for solving Toeplitz submatrix systems. The algorithm is then applied to signal processing and modeling of time series, including a lattice form of LMMSE IIR filters, a fast time and order recursive algorithm (TORA) for determining parameter estimates for a family of ARX models, and a fast method for simultaneous estimation of ARX system order and parameters. The TORA converges to the LS algorithm provided the time series involved are uniformly bounded. The strong consistency of the TORA and proposed order estimation method is shown under some conditions, which are applicable to adaptive control and IIR signal processing. The key factors in the consistency and convergence rate are explained through several examples. Finally, a sufficient condition on instantaneous stability for TORA all- pole filters is established and then an implementable stabilizing algorithm is suggested for general SISO adaptive filters, which does not need prior knowledge of the system that generates the data being processed.
    URI
    http://hdl.handle.net/1903/5168
    Collections
    • Institute for Systems Research Technical Reports

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility