Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • A. James Clark School of Engineering
    • Institute for Systems Research Technical Reports
    • View Item
    •   DRUM
    • A. James Clark School of Engineering
    • Institute for Systems Research Technical Reports
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Unified Parallel Lattice Structures for Time-Recursive Discrete Cosine/Sine/Hartley Transforms

    Thumbnail
    View/Open
    TR_91-36.pdf (1.235Mb)
    No. of downloads: 734

    Date
    1991
    Author
    Liu, K.J. Ray
    Chiu, Ching-Te
    Metadata
    Show full item record
    Abstract
    The problems of unified efficient computations of the discrete cosine transform (DCT), discrete sine transform (DST), discrete Hartley transform (DHT), and their inverse transforms are considered. In particular, a new scheme employing the time- recursive approach to compute these transforms is presented. Using such approach, unified parallel lattice structures that can dually generate the DCT and DST simultaneously as well as the DHT are developed. These structures can obtain the transformed data for sequential input time recursively and the total number of multipliers required is a linear function of the transform size N. Furthermore, there is no any constraint on N. The resulting architectures are regular, module, and without global communication so that it is very suitable for VLSI implementation for high-speed applications such as ISDN network and HDTV system. It is also shown in this paper that the DCT, DST, DHT and their inverse transforms share an almost identical lattice structure. The lattice structures can also be formulated into pre-lattice and post-lattice realizations. Two methods, the SISO and double- lattice approaches, are developed to reduce the number of multipliers in the parallel lattice structure by 2N and N respectively. The trade-off between time and area for the block data processing is also considered.
    URI
    http://hdl.handle.net/1903/5084
    Collections
    • Institute for Systems Research Technical Reports

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility