Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • A. James Clark School of Engineering
    • Institute for Systems Research Technical Reports
    • View Item
    •   DRUM
    • A. James Clark School of Engineering
    • Institute for Systems Research Technical Reports
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Convergence of a Neural Network Classifier

    Thumbnail
    View/Open
    TR_90-12.pdf (915.9Kb)
    No. of downloads: 556

    Date
    1990
    Author
    Baras, John S.
    LaVigna, Anthony
    Metadata
    Show full item record
    Abstract
    Kohonen's Learning Vector Quantization (LVQ) is a neural network architecture that performs nonparametric classification. It classifies observations by comparing them to k templates called Voronoi vectors. The locations of these vectors are determined from past labeled data through a learning algorithm. When learning is complete, the class of a new observation is the same as the class of the closest Voronoi vector. Hence LVQ is similar to nearest neighbors, except that instead of all of the past obervations being searched only the k Voronoi vectors are searched. In this paper, we show that the LVQ learning algorithm converges to locally asymptotic stable equilibria of an ordinary differential equation. We show that the learning algorithm performance stochastic approximation. Convergence of the Voronoi vectors is guaranteed under the appropriate conditions on the underlying statistics of the classification problem. We also present a modification to the learning algorithm which we argue results in the convergence of the LVQ error to the Bayesian optimal error as the appropriate parameters become large.
    URI
    http://hdl.handle.net/1903/4963
    Collections
    • Institute for Systems Research Technical Reports

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility