Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • A. James Clark School of Engineering
    • Institute for Systems Research Technical Reports
    • View Item
    •   DRUM
    • A. James Clark School of Engineering
    • Institute for Systems Research Technical Reports
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Joint Design of Block Source Codes and Modulation Signal Sets

    Thumbnail
    View/Open
    TR_90-4.pdf (3.011Mb)
    No. of downloads: 856

    Date
    1990
    Author
    Vaishampayan, V.
    Farvardin, Nariman
    Metadata
    Show full item record
    Abstract
    We consider the problem of designing a bandwidth-efficient, power-limited digital communication system for transmitting information from a source with known statistics over a noisy waveform channel. Each output vector of the source is encoded by a block encoder to one of a finite number of signals in a modulation signal set. The received waveform is processed in the receiver by an estimation-based decoder. The goal is to design an encoder, decoder and modulation signal set so as to minimize the mean squared-error (MSE) between the source vector and its estimate in the receiver. For highly noisy gaussian channels we justify restricting the estimator to the class of linear estimators. With this restriction, we derive necessary conditions for optimality of the encoder, decoder and the signal set and develop a convergent algorithm for solving these necessary conditions. We prove that the MSE of the digital system designed here is bounded from below by the MSE of an analog modulation system. Performance results for the digital system and signal constellation designs are presented for first- order Gauss-Markov sources and a white Gaussian channel. Comparisons are made against a standard vector quantizer (VQ)- based system, the bounding analog modulation system and the optimum performance theoretically attainable. The results indicate that for a correlated source, a sufficiently noisy channel and specific source block sizes and bandwidths, the digital system performance coincides with the optimum performance theoretically attainable. Further, significant performance improvements over the standard VQ-based system are demonstrated when the channel is noisy. Situations in which the linearity assumption results in poor performance are also identified.
    URI
    http://hdl.handle.net/1903/4958
    Collections
    • Institute for Systems Research Technical Reports

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility