Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • A. James Clark School of Engineering
    • Institute for Systems Research Technical Reports
    • View Item
    •   DRUM
    • A. James Clark School of Engineering
    • Institute for Systems Research Technical Reports
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Nonlinear Modeling of Gated Range Tracker Dynamics

    Thumbnail
    View/Open
    TR_90-1.pdf (1.160Mb)
    No. of downloads: 444

    Date
    1990
    Author
    Abed, Eyad H.
    Goldberg, Allen J.
    Gover, Robert E.
    Metadata
    Show full item record
    Abstract
    Nonlinear dynamic models for gated radar range trackers are developed and applied to the range resolution problem. Two common types of tracking loop dynamics, as well as the automatic gain control (AGC), are accounted for in the models. The null detector is formulated in a general way that encompasses many important error detector laws, including centroid and leading- edge. Both discrete-time and continuous-time dynamic models are presented for each class of tracking loop. The discrete-time models are derived using an analytical description of the pulse- to-pulse dynamics of the tracker. The continuous-time models are approximations of their discrete-time counterparts for sufficiently small values of the pulse repetition interval. Each of the models is analyzed for a deterministic target return condition. General criteria for asymptotic stability of equilibrium points of the models are obtained. The most striking of the stability criteria is a sign requirement on the slope of of a "range error curve". These criteria are used in a two- target example to draw conclusions on a tracker's ability to resolve closely spaced targets as a function of target separation. These conclusions are compared with previously reported conclusions on resolvability obtained using Woodward's "ambiguity function" approached.
    URI
    http://hdl.handle.net/1903/4956
    Collections
    • Institute for Systems Research Technical Reports

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility