Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • College of Computer, Mathematical & Natural Sciences
    • Computer Science
    • Technical Reports of the Computer Science Department
    • View Item
    •   DRUM
    • College of Computer, Mathematical & Natural Sciences
    • Computer Science
    • Technical Reports of the Computer Science Department
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Performance Prediction Framework for Data Intensive Applications on Large Scale Parallel Machines

    Thumbnail
    View/Open
    CS-TR-3918.ps (414.5Kb)
    No. of downloads: 298

    Auto-generated copy of CS-TR-3918.ps (213.0Kb)
    No. of downloads: 957

    Date
    1998-10-15
    Author
    Uysal, Mustafa
    Kurc, Tahsin M.
    Sussman, Alan
    Saltz, Joel
    Metadata
    Show full item record
    Abstract
    This paper presents a simulation-based performance prediction framework for large scale data-intensive applications on large scale machines. Our framework consists of two components: application emulators and a suite of simulators. Application emulators provide a parameterized model of data access and computation patterns of the applications and enable changing of critical application components (input data partitioning, data declustering, processing structure, etc.) easily and flexibly. Our suite of simulators model the I/O and communication subsystems with good accuracy and execute quickly on a high-performance workstation to allow performance prediction of large scale parallel machine configurations. The key to efficient simulation of very large scale configurations is a technique called loosely-coupled simulation where the processing structure of the application is embedded in the simulator, while preserving data dependencies and data distributions. We evaluate our performance prediction tool using a set of three data-intensive applications. (Also cross-referenced as UMIACS TR # 98-39)
    URI
    http://hdl.handle.net/1903/495
    Collections
    • Technical Reports of the Computer Science Department

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility