Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • A. James Clark School of Engineering
    • Institute for Systems Research Technical Reports
    • View Item
    •   DRUM
    • A. James Clark School of Engineering
    • Institute for Systems Research Technical Reports
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Optimal Quantization and Fusion In Multi-Sensor Systems for the Detection of Weak Signals in Dependent Noise.

    Thumbnail
    View/Open
    TR_89-80.pdf (1.075Mb)
    No. of downloads: 472

    Date
    1989
    Author
    Chau, Yawgeng A.
    Geraniotis, Evaggelos A.
    Metadata
    Show full item record
    Abstract
    Two problems of memoryless quantization and data fusion for the detection of a weak signal in stationary dependent noise are addressed: (i) fusion from sensors with mutually independent observations across sensors but dependent across time and (ii) fusion from sensors with correlated observations across time and sensors. For each problem, we consider four distinct schemes (a) fusing the test statistics formed by the sensors without previous quantization (b) quantizing suboptimally each observation and then fusing, (c) quantizing optimally each observation and then fusing, and (d) quantizing optimally each test statistic of the sensors and then fusing the observation sequence of each sensor consists of a common weak signal disturbed by an additive stationary m-dependent, f-mixing or p-mixing noise process. To guarantee high-quality performance, a common large sample size is employed by each sensor. Design criteria are developed from the Neyman-Pearson test in the fusion center for the optimal memoryless sensor test statistics and the sensor quantizer parameters (quantization levels and breakpoints); these design criteria are shown to involve an extension of the asymptotic relative efficiency used in single-sensor detection and quantization. Numerical results in support of the analysis are given for the case of dependent p=mixing Cauchy noise.
    URI
    http://hdl.handle.net/1903/4919
    Collections
    • Institute for Systems Research Technical Reports

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility