University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • A. James Clark School of Engineering
    • Institute for Systems Research Technical Reports
    • View Item
    •   DRUM
    • A. James Clark School of Engineering
    • Institute for Systems Research Technical Reports
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Cascaded Neural-Analog Networks for Real Time Decomposition of Superposed Radar Signals in the Presence of Noise.

    Thumbnail
    View/Open
    TR_89-33.pdf (2.161Mb)
    No. of downloads: 307

    Date
    1989
    Author
    Teolis, A.
    Pati, Y.C.
    Peckerar, M.C.
    Shamma, S.
    Metadata
    Show full item record
    Abstract
    Among the numerous problems which arise in the context of radar signal processing is the problem of extraction of information from a noise corrupted signal. In this application the signal is assumed to be the superposition of outputs from multiple radar emitters. Associated with the output of each emitter is a unique set of parameters which are in general unknown. Significant parameters associated with each emitter are (i) the pulse repetition frequencies, (ii) the pulse durations (widths) associated with pulse trains and (iii) the pulse amplitudes: A superposition of the outputs of multiple emitters together with additive noise is observed at the receiver. In this study we consider the problem of decomposing such a noise corrupted linear combination of emitter outputs into an underlying set of basis signals while also identifying the parameters associated with each of the emitters involved. Foremost among our objectives is to design a system capable of performing this decomposition/classification in a demanding realtime environment. We present here a system composed of three cascaded neural-analog networks which, in simulation, has demonstrated an ability to nominally perform the task of decomposition and classification of superposed radar signals under extremely high noise conditions.
    URI
    http://hdl.handle.net/1903/4882
    Collections
    • Institute for Systems Research Technical Reports

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility