Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • A. James Clark School of Engineering
    • Institute for Systems Research Technical Reports
    • View Item
    •   DRUM
    • A. James Clark School of Engineering
    • Institute for Systems Research Technical Reports
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Note on the NP-hardness of the Topological Via Minimization Problem.

    Thumbnail
    View/Open
    TR_89-18.pdf (707.5Kb)
    No. of downloads: 231

    Date
    1989
    Author
    Rim, C.S.
    Kashiwabara, Toshinobu
    Nakajima, K.
    Metadata
    Show full item record
    Abstract
    Suppose that we are given a two-layer routing area bounded by a closed continuous curve B, a set of terminals placed on B which are available on both layers, and a set of two terminal-nets. The topological via minimization problem is the problem of routing the nets by zero-width wires such that no two wires corresponding to different nets intersect on the same layer and the number of vies used is minimized. Very recently, it was reported that this problem is NP-hard but the proof contains a critical flaw. In this paper, we present a correct NP-hardness proof of the problem.
    URI
    http://hdl.handle.net/1903/4867
    Collections
    • Institute for Systems Research Technical Reports

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility