Show simple item record

A Globally Convergent Algorithm with Adaptively Refined Discretization for Semi-Infinite Optimization Problems Arising in Engineering Design.

dc.contributor.authorPanier, E.R.en_US
dc.contributor.authorTits, A.L.en_US
dc.date.accessioned2007-05-23T09:40:53Z
dc.date.available2007-05-23T09:40:53Z
dc.date.issued1988en_US
dc.identifier.urihttp://hdl.handle.net/1903/4749
dc.description.abstractOptimization problems arising in engineering design often exhibit specific features which, in the interest of computational efficiency, ought to be exploited. Such is the possible presence of 'functional' specifications, i.e., specifications that are to be met over an interval of values of an independent parameter such as time or frequency. Such problems pertain to semiinfinite optimization. While most of the algorithms that have been proposed for the solution of these problems make use, at each iteration, of a set of local maximizers over the range of the independent parameter, the question of suitably approximating such maximizers is generally left aside. It has been suggested that this issue can be addressed by means of an adaptively refined discretization of the interval of variation of the independent parameter. The algorithm proposed in this paper makes use of such a technique and, by means of a certain memory mechanism, avoids the potential lack of convergence suffered by an existing algorithm.en_US
dc.format.extent735011 bytes
dc.format.mimetypeapplication/pdf
dc.language.isoen_USen_US
dc.relation.ispartofseriesISR; TR 1988-16en_US
dc.titleA Globally Convergent Algorithm with Adaptively Refined Discretization for Semi-Infinite Optimization Problems Arising in Engineering Design.en_US
dc.typeTechnical Reporten_US
dc.contributor.departmentISRen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record