Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • A. James Clark School of Engineering
    • Institute for Systems Research Technical Reports
    • View Item
    •   DRUM
    • A. James Clark School of Engineering
    • Institute for Systems Research Technical Reports
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Efficient Algorithms for Circular-Arc Containment Graphs

    Thumbnail
    View/Open
    MS_87-11.pdf (1.780Mb)
    No. of downloads: 525

    Date
    1987
    Author
    Nirkhe, M.V.
    Advisor
    Nakajima, K.
    Metadata
    Show full item record
    Abstract
    In the recent past, a wide variety of algorithms have been developed for a class of intersection graphs, called interval graphs. As a generalization of interval graphs, circular-arc graphs have also been studied extensively. Another category of graphs, namely containment graphs, has recently received some attention. In particular, interval containment graphs have been studied recently and several optimal algorithms have been developed for this class of graphs. In this thesis we introduce a new class of containment graphs called circular-arc containment graphs. A circular-arc containment graph is a generalization of an interval containment graph and is defined as follows: A graph G sub A = (V sub A, E sub A) is called a ciruclar-arc containment graph for a family A = {A sub 1, A sub n} of arcs on a circle, if for each v sub i V sub A, there is an arc A sub i A, and (v sub i, v sub j) E sub A if and only if one of A sub i and A sub j contains the other. We characterize this class of graphs by establishing its equivalence to another relatively new class of intersection graphs, called circular permutation graphs. Given a circular-arc containment graph in the form of a family of arcs on a circle, we develop efficient algorithms for finding a maximum clique, a maximum independent set, and a minimum coloring of the graph.
    URI
    http://hdl.handle.net/1903/4732
    Collections
    • Institute for Systems Research Technical Reports

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility