Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • A. James Clark School of Engineering
    • Institute for Systems Research Technical Reports
    • View Item
    •   DRUM
    • A. James Clark School of Engineering
    • Institute for Systems Research Technical Reports
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Restricted Quadratic Forms, Inertia Theorems and the Schur Complement.

    Thumbnail
    View/Open
    TR_87-119.pdf (1.300Mb)
    No. of downloads: 775

    Date
    1987
    Author
    Maddocks, J.H.
    Metadata
    Show full item record
    Abstract
    The starting point of this investigation is the properties of restricted quadratic forms, x^TAx, x {IS A MEMBER OF} S {IS A SUBSET OF} {m DIMERNSIONAL SPACE}, where A is an m x m real symmetric matrix, and S is a subspace. The index theory of Heatenes (1951) and Maddocks (1985) that treats the more general Hilbert space version of this problem is first specialized to the finite-dimensional context, and appropriate extensions, valid only in finite-dimensions, are made. The theory is then applied to obtain various inertia theorems for matricea and positivity tests for quadratic forms. Expressions for the inertial of divers symmetrically partitioned matrices are described. In particular, an inertia theorem for the generalized Schur complement is given. The investigation recovers, links and extends several, formerly disparate, results in the general area of inertia theorems.
    URI
    http://hdl.handle.net/1903/4627
    Collections
    • Institute for Systems Research Technical Reports

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility