Show simple item record

Generalized Fair Reachability Analysis for Cyclic Protocols

dc.contributor.authorLiu, Hongen_US
dc.contributor.authorMiller, Raymond E.en_US
dc.description.abstractIn this paper, the notion of fair reachability is generalized to cyclic protocols with $n\geq 2$ machines. Substantial state reduction can be achieved via fair progress state exploration. It is shown that the fair reachable state space is exactly the set of reachable states with equal channel length. As a result, deadlock detection is decidable for ${\cal P}$, the class of cyclic protocols whose fair reachable state spaces are finite. The concept of simultaneous unboundedness is defined and the lack of it is shown to be a necessary and sufficient condition for a protocol to be in ${\cal P}$. Through finite extension of the fair reachable state space, it is also shown that detection of unspecified receptions, unboundedness, and nonexecutable transitions are all decidable for ${\cal P}$. Furthermore, it is shown that any protocol ${\cal P}$ is logically correct if and only if there is no logical error in its fair reachable state space. This study shows that for the class ${\cal P}$, our generalized fair reachability analysis technique not only achieves substantial state reduction but also maintains very competitive logical error coverage. Therefore, it is a very useful technique to prove logical correctness for a wide variety of cyclic protocols.en_US
dc.format.extent329275 bytes
dc.relation.ispartofseriesUM Computer Science Department; CS-TR-3421en_US
dc.titleGeneralized Fair Reachability Analysis for Cyclic Protocolsen_US
dc.typeTechnical Reporten_US
dc.relation.isAvailableAtDigital Repository at the University of Marylanden_US
dc.relation.isAvailableAtUniversity of Maryland (College Park, Md.)en_US
dc.relation.isAvailableAtTech Reports in Computer Science and Engineeringen_US
dc.relation.isAvailableAtComputer Science Department Technical Reportsen_US

Files in this item


This item appears in the following Collection(s)

Show simple item record