Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Microscale Study of Nucleation Process in Boiling of Low-Surface-Tension Liquids

    Thumbnail
    View/Open
    umi-umd-3725.pdf (8.386Mb)
    No. of downloads: 2275

    Date
    2006-08-09
    Author
    Moghaddam, Saeed
    Advisor
    Kiger, Kenneth T.
    Metadata
    Show full item record
    Abstract
    A novel MEMS device has been developed to study some of the fundamental issues surrounding the physics of the nucleation process intrinsic to boiling heat transfer. The study was focused on boiling of FC-72 liquid. Over the past 50 years, scientists have developed several competing mechanistic models to predict the boiling heat transfer coefficient. Although the developed models are intended to predict the heat transfer coefficient at macroscales, their fundamental assumptions lie on complex microscale sub-processes that remain to be experimentally verified. Two main unresolved issues regarding these sub-processes are: 1) bubble growth dynamics and the relative importance of different mechanisms of heat transfer into the bubble and 2) vapor/liquid/surface thermal interactions and the bubble's role in heat transfer enhancement during the nucleation process. The developed device generates bubbles from an artificial nucleation site centered within a radially distributed temperature sensor array (with 22-40 microns spatial resolution) while the surface temperature data and images of the bubbles are recorded. The temperature data enabled numerical calculation of the surface heat flux. Using the test results, the microlayer contribution to the bubble growth was determined to increase from 11.6% to 22% when surface temperature was increased from 80 C to 97 C. It was determined that the transient conduction process occurs predominantly at the bubble/surface contact area, and before the bubble departure, contrary to what has been commonly assumed in classical boiling models. For the first time, the convection heat transfer outside the contact area (often known as microconvection) and transient conduction within the contact area were differentiated. The microconvection heat flux was found to be relatively close to that of the equivalent natural convection produced by the same geometry, but becomes significantly stronger than natural convection at higher surface temperatures. Test results under saturation conditions showed that when surface temperature is increased from 80 C to 97 C, the contribution of the different mechanisms of heat transfer within a circular area of diameter equal to that of the bubble changes from: 1) 28.8% to 16.3% for microlayer, 2) 45.3% to 32.1% for transient conduction, and 3) 25.8% to 51.6% for microconvection.
    URI
    http://hdl.handle.net/1903/3878
    Collections
    • Mechanical Engineering Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility