Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    An unsplit staggered mesh scheme for multidimensional magnetohydrodynamics: a staggered dissipation-control differencing algorithm.

    Thumbnail
    View/Open
    umi-umd-3687.pdf (7.174Mb)
    No. of downloads: 1639

    Date
    2006-08-01
    Author
    Lee, Dongwook
    Advisor
    Deane, Anil E
    Metadata
    Show full item record
    Abstract
    A new unsplit staggered mesh algorithm (USM) that solves multidimensional magnetohydrodynamics (MHD) on a staggered mesh is introduced and studied. Proper treatments of multidimensional flow problems are required for MHD simulations to avoid unphysical results that can even introduce numerical instability. The research work in this dissertation, which is based on an approach that combines the high-order Godunov method and the constrained transport (CT) scheme, uses such multidimensional consideration in a spatial reconstruction-evolution step. The core problem of MHD simulation is the nonlinear evolution of solutions using well-designed algorithms that maintain the divergence-free constraint of the magnetic field components. The USM algorithm proposed in this dissertation ensures the solenoidal constraint by using Stokes' Theorem as applied to a set of induction equations. In CT-type of MHD schemes, one solves the discrete induction equations to proceed temporal evolutions of the staggered magnetic fields using electric fields. The accuracy of the computed electric fields therefore directly influence the solution quality of the magnetic fields. To meet this end, an accurate and improved electric field construction (IEC) scheme has been introduced as one of the essential parts of the current dissertation work. Another important feature in this work is a development of a new algorithm that solves the induction equations with an added capability that controls numerical (anti)dissipations of the magnetic fields. This staggered dissipation-control differencing algorithm (SDDA) makes use of extra dissipation terms, for which their derivations are established from modified equations of the induction equations. A series of comparison studies in a suite of numerical results of the USM-IEC-SDDA scheme will show a great deal of qualitative improvements in many stringent multidimensional MHD test problems.
    URI
    http://hdl.handle.net/1903/3842
    Collections
    • Computer Science Theses and Dissertations
    • Mathematics Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility