Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Analysis of Errors in Software Reliability Prediction Systems and Application of Model Uncertainty Theory to Provide Better Predictions

    Thumbnail
    View/Open
    umi-umd-3621.pdf (1.595Mb)
    No. of downloads: 2185

    Date
    2006-07-14
    Author
    Ghose, Susmita
    Advisor
    Smidts, Carol
    Metadata
    Show full item record
    Abstract
    Models are the medium by which we reflect and express our understanding of some aspect of reality, a particular unknown of interest. As it is virtually impossible to grasp any situation in its entire complexity, models are representations of reality that are always partial resulting in a state of uncertainty or error. However the question of model error from a pragmatic point of view is not one of accounting for the difference between models and reality at a fundamental level, as such difference always exists. Rather the question is whether the prediction or performance of the model is correct at some practically acceptable level, within the model's domain of application. Here lays the importance of assessing the impact of uncertainties about predictions of a model, modeling the error and trying to reduce the uncertainties associated as much as possible to provide better estimations. While the methods for assessing the impact of errors on the performance of a model and error modeling are well established in various scientific and engineering disciplines, to the best of our knowledge no substantial work has been done in the field of Software Reliability Modeling despite the fact that the inadequacy of the present state and techniques of software reliability estimation has been recognized by industry and government agencies. In summary, even though hundreds of software reliability models have been developed, the software reliability discipline is still struggling to establish a software reliability prediction framework. This work intends to improve the performance of software reliability models through error modeling. It analyzes the errors associated with a set of five software Reliability Prediction Systems (RePSs) and attempts to improve their prediction accuracy using a model uncertainty framework. In the process, this work also statistically validates the performances of the RePSs. It also provides a time and cost effective alternative to performing experiments that are required to assess the error form which is integral to the process of application of the model uncertainty framework.
    URI
    http://hdl.handle.net/1903/3781
    Collections
    • Mechanical Engineering Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility