Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Design of a Large Bandwidth Scanning SQUID Microscope using a Cryocooled Hysteretic dc SQUID

    Thumbnail
    View/Open
    umi-umd-3170.pdf (9.545Mb)
    No. of downloads: 2867

    Date
    2006-01-25
    Author
    Kwon, Soun Pil
    Advisor
    Wellstood, Frederick C
    Metadata
    Show full item record
    Abstract
    I present the design and analysis of a large bandwidth scanning Superconducting Quantum Interference Device (SQUID) microscope. Currently available SQUID microscopes are limited to detecting magnetic fields with frequencies less than 1 MHz. However, for observing nanosecond time scale phenomena such as logic operations in today's computer chips, SQUID microscopes with 1 GHz bandwidth and larger are required. The major limitation in SQUID microscope bandwidth is not the SQUID itself but the electronics and readout technique. To increase bandwidth, the fast transition of a hysteretic dc SQUID from the zero voltage state to the resistive state can be used as the detection element in a new SQUID readout technique, referred to as pulsed SQUID sampling. The technique involves pulsing the bias current to the dc SQUID while monitoring the voltage across it. As the pulse length shortens, the SQUID measures the applied external magnetic flux with shorter sampling time, which increases the bandwidth. Experimental tests of the technique have demonstrated the possibility of following signals with frequencies up to 1 GHz using a dc SQUID with Nb-AlOx-Nb Josephson junctions at around 4 K. Ringing in the pulse profile permitted the effective bandwidth of the sampling technique to be much greater than the nominal value suggested by the pulse length setting on the generator. I identify additional means of increasing bandwidth: redesigning the dc SQUID, implementing transmission line wiring, adding high speed superconducting circuits, etc. which should allow bandwidths to reach 40 GHz and higher. Towards creating a large bandwidth SQUID microscope, I also assembled and tested with collaborators a fully functional 4 K scanning SQUID microscope. With the microscope, which used a nonhysteretic niobium dc SQUID with conventional flux-locked-loop SQUID electronics, I was able to obtain the magnetic field image of a current carrying circuit.
    URI
    http://hdl.handle.net/1903/3361
    Collections
    • Physics Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility