Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    INTEGRATING SOFTWARE BEHAVIOR INTO DYNAMIC PROBABILISTIC RISK ASSESSMENT

    Thumbnail
    View/Open
    umi-umd-3136.pdf (927.3Kb)
    No. of downloads: 2168

    Date
    2005-12-21
    Author
    Zhu, Dongfeng
    Advisor
    Smidts, Carol
    Mosleh, Ali
    Metadata
    Show full item record
    Abstract
    Software plays an increasingly important role in modern safety-critical systems. Although research has been done to integrate software into the classical Probability Risk Assessment (PRA) framework, current PRA practice overwhelmingly neglects the contribution of software to system risk. The objective of this research is to develop a methodology to integrate software contributions in the Dynamic Probabilistic Risk Assessment (DPRA) environment. DPRA is considered to be the next generation of PRA techniques. It is a set of methods and techniques in which simulation models that represent the behavior of the elements of a system are exercised in order to identify risks and vulnerabilities of the system. DPRA allows consideration of dynamic interactions of system elements and physical variables. The fact remains, however, that modeling software for use in the DPRA framework is also quite complex and very little has been done to address the question directly and comprehensively. This dissertation describes a framework and a set of techniques to extend the DPRA approach to allow consideration of the software contributions on system risk. The framework includes a software representation, an approach to incorporate the software representation into the DPRA environment SimPRA, and an experimental demonstration of the methodology. This dissertation also proposes a framework to simulate the multi-level objects in the simulation based DPRA environment. This is a new methodology to address the state explosion problem. The results indicate that the DPRA simulation performance is improved using the new approach. The entire methodology is implemented in the SimPRA software. An easy to use tool is developed to help the analyst to develop the software model. This study is the first systematic effort to integrate software risk contributions into the dynamic PRA environment.
    URI
    http://hdl.handle.net/1903/3305
    Collections
    • Mechanical Engineering Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility