Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • College of Computer, Mathematical & Natural Sciences
    • Computer Science
    • Technical Reports from UMIACS
    • View Item
    •   DRUM
    • College of Computer, Mathematical & Natural Sciences
    • Computer Science
    • Technical Reports from UMIACS
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Very fast optimal bandwidth selection for univariate kernel density estimation

    Thumbnail
    View/Open
    CS-TR-4774.pdf (640.2Kb)
    No. of downloads:

    Date
    2006-01-03
    Author
    Raykar, Vikas Chandrakant
    Duraiswami, Ramani
    Metadata
    Show full item record
    Abstract
    Most automatic bandwidth selection procedures for kernel density estimates require estimation of quantities involving the density derivatives. Estimation of modes and inflexion points of densities also require derivative estimates. The computational complexity of evaluating the density derivative at M evaluation points given N sample points from the density is O(MN). In this paper we propose a computationally efficient $\epsilon$-exact approximation algorithm for univariate, Gaussian kernel based, density derivative estimation that reduces the computational complexity from O(MN) to linear order (O(N+M)). The constant depends on the desired arbitrary accuracy, $\epsilon$. We apply the density derivative evaluation procedure to estimate the optimal bandwidth for kernel density estimation, a process that is often intractable for large data sets. For example for N = M = 409,600 points while the direct evaluation of the density derivative takes around 12.76 hours the fast evaluation requires only 65 seconds with an error of around $10^{-12)$. Algorithm details, error bounds, procedure to choose the parameters and numerical experiments are presented. We demonstrate the speedup achieved on the bandwidth selection using the ``solve-the-equation plug-in method'' [18]. We also demonstrate that the proposed procedure can be extremely useful for speeding up exploratory projection pursuit techniques.
    URI
    http://hdl.handle.net/1903/3028
    Collections
    • Technical Reports from UMIACS
    • Technical Reports of the Computer Science Department

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility