Cryogenic Design and Thermal Analysis of the CURIE CryoTrap
View/ Open
Date
2022Author
Osborn, Rebecca Caroline
Advisor
Koeth, Timothy W
DRUM DOI
Metadata
Show full item recordAbstract
The decay rates of electron capture (EC) radioisotopes, such as 7Be, are demonstrativelysusceptible to alteration with change to the electron orbital structure [1] [2] [3] [4]. The Cryogenic
Ultra-high vacuum Radioactive Isotope Experiment (CURIE) Project aims to isolate the various
charge states of the low-Z radioisotope 7Be stably to perform novel half-life measurements. To
achieve this, the system must be cooled to 4K to reach extreme high vacuum (XHV) conditions
in excess of 10E−15 mbar and to ensure single ion resolution detection. The cryogenic design
which achieves this is presented here. The design consists of the actively cooled 45K radiation
shield, and the 4K stage which houses the Penning trap. The 4K stage is brought to XHV
and maintained at these pressures through the design of a rotary “cryovalve”. This thesis details
the entire apparatus, the heat loads incident on both stages through simulation, and outlines an
experimental method for testing the “cryovalve”.