Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Fluorescent Carbon Nanotubes as Molecular Sensors and Color-Center Hosts

    Thumbnail
    View/Open
    Qu_umd_0117E_22428.pdf (8.132Mb)
    No. of downloads: 82

    Date
    2022
    Author
    Qu, Haoran
    Advisor
    Wang, YuHuang
    DRUM DOI
    https://doi.org/10.13016/wwb1-qjhe
    Metadata
    Show full item record
    Abstract
    This thesis demonstrates the application of single-walled carbon nanotubes (SWCNTs) as single-digit nanopores for molecular sieving and addresses a fundamental challenge pertaining to controlled synthesis of organic color-centers (OCCs) on the sp2 carbon lattice of SWCNTs. First, I describe a hyperspectral single-defect photoluminescence imager system that provides both hyperspectral imaging and super-resolution capabilities in the shortwave infrared. Second, I aim to understand the relationship between nanotube photoluminescence and encapsulated molecules. Using carbon nanotubes with sub-1 nm pores, I demonstrate molecular sieving of n-hexane from cyclohexane, which are nearly identical in size. Furthermore, I discovered a light irradiation method to drive structural transformation of OCCs which allow us to narrow the spectral distribution of defect emissions by 26%. Finally, I show that [2+2] cycloaddition can efficiently create OCCs. Remarkably, this novel defect chemistry reduces the number of OCC bonding configurations from six, which are commonly observed with monovalent defect chemistries, to just three. This work may have broad implications to the potential applications of SWCNTs and OCCs in chemical sensing, bioimaging, and quantum information science.
    URI
    http://hdl.handle.net/1903/28995
    Collections
    • Chemistry & Biochemistry Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility