Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    DISTRIBUTED SENSING FOR FLEXIBLE STRUCTURES USING A FIBER OPTIC SENSOR SYSTEM

    Thumbnail
    View/Open
    dissertation.pdf (11.57Mb)
    No. of downloads: 1692

    Date
    2003-11-21
    Author
    Baldwin, Chris
    Advisor
    Buckley, Steven
    Balachandran, Balakumar
    Metadata
    Show full item record
    Abstract
    In this dissertation, a framework is developed and demonstrated for the use of a new shape measurement system consisting of fiber Bragg grating (FBG) based strain sensors, a shape determination algorithm based on Frenet frames, and a signal processing algorithm based on modal analysis techniques. The system is experimentally validated by using a long slender, aluminum cantilever structure (65.625"x2.0"x0.125") with eight serially multiplexed FBG sensors. The multiplexed FBG sensors measure the bending strain distribution along the cantilever structure, and this distribution is used to calculate the dynamic shape of the structure forced by a base excitation. The structural shape data is processed by using modal analysis techniques to determine the modal coefficients and the associated spatial modes that best represent the structure's vibration. The results obtained for the modal coefficients are found to compare well with results of Fourier transform analysis of signals recorded over time. Analysis by using the shape algorithm developed herein demonstrates the effectiveness of using a Frenet frame-based technique to determine the shape of the structure from recorded strain data. Sources of error due to factors such as the number of sensors and Taylor series approximation in the shape algorithm are examined. The methodology discussed in this dissertation allows both static and dynamic monitoring of structural shape characteristics. This type of real-time analysis may be useful for applications in structural health monitoring where changes in the modal coefficients may lead to indications of damage to the structure and in applications such as sonar arrays and aircraft wings where knowledge of a structure's shape can yield improved results.
    URI
    http://hdl.handle.net/1903/288
    Collections
    • Mechanical Engineering Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility