Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • College of Computer, Mathematical & Natural Sciences
    • Geology
    • Geology Research Works
    • View Item
    •   DRUM
    • College of Computer, Mathematical & Natural Sciences
    • Geology
    • Geology Research Works
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Geodynamic implications of ophiolitic chromitites in the La Cabaña ultramafic bodies, Central Chile

    Thumbnail
    View/Open
    Accepted version of manuscript. (12.95Mb)
    No. of downloads: 44

    Date
    2014
    Author
    González-Jiménez, José María
    Barra, Fernando
    Walker, Richard J.
    Reich, Martin
    Gervilla, Fernando
    Citation
    http://dx.doi.org/10.1080/00206814.2014.947334
    DRUM DOI
    https://doi.org/10.13016/fl1q-vo56
    Metadata
    Show full item record
    Abstract
    Chromitites (>80% volume chromite) hosted in two ultramafic bodies (Lavanderos and Centinela Bajo) from the Palaeozoic metamorphic basement of the Chilean Coastal Cordillera were studied in terms of their chromite composition, platinumgroup element (PGE) abundances, and Re-Os isotopic systematics. Primary chromite (Cr# = 0.64–0.66; Mg# = 48.71– 51.81) is only preserved in some massive chromitites from the Centinela Bajo ultramafic body. This chemical fingerprint is similar to other high-Cr chromitites from ophiolite complexes, suggesting that they crystallized from arc-type melt similar to high-Mg island-arc tholeiites (IAT) and boninites in supra-subduction mantle. The chromitites display enrichment in IPGE (Os, Ir, Ru) over PPGE (Rh, Pt, Pd), with PGE concentrations between 180 and 347 ppb, as is typical of chromitites hosted in the mantle of supra-subduction zone (SSZ) ophiolites. Laurite (RuS2)-erlichmanite (OsS2) phases are the most abundant inclusions of platinum-group minerals (PGM) in chromite, indicating crystallization from S-undersaturated melts in the subarc mantle. The metamorphism associated with the emplacement of the ultramafic bodies in the La Cabaña has been determined to be ca. 300 Ma, based on K-Ar dating of fuchsite. Initial 187Os/188Os ratios for four chromitite samples, calculated for this age, range from 0.1248 to 0.1271. These isotopic compositions are well within the range of chromitites hosted in the mantle section of other Phanaerozoic ophiolites. Collectively, these mineralogical and geochemical features are interpreted in terms of chromite crystallization in dunite channels beneath a spreading centre that opened a marginal basin above a supra-subduction zone. This implies that chromitite-bearing serpentinites in the metamorphic basement of the Coastal Cordillera are of oceanic-mantle origin and not oceanic crust as previously suggested. We suggest that old subcontinental mantle underlying the hypothetical Chilenia micro-continent was unroofed and later altered during the opening of the marginal basin. This defined the compositional and structural framework in which the protoliths of the meta-igneous and meta-sedimentary rocks of the Eastern and Western Series of the Chilean Coastal Cordillera basement were formed.
    URI
    http://hdl.handle.net/1903/28270
    Collections
    • Geology Research Works

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility