Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Identification and functional analysis of a biflavone as a novel inhibitor of TRPV4-dependent atherogenic process in macrophages

    View/Open
    Alharbi_umd_0117E_21499.pdf (23.35Mb)
    (RESTRICTED ACCESS)
    No. of downloads: 0

    Date
    2021
    Author
    Alharbi, Mazen Obaid
    Advisor
    Rahaman, Shaik O.
    DRUM DOI
    https://doi.org/10.13016/d15m-zuyj
    Metadata
    Show full item record
    Abstract
    Cardiovascular disease is the major cause of death throughout the world. Atherosclerosis, a chronic inflammatory disease of large arteries, is the major contributor to the growing burden of cardiovascular disease-related mortality and morbidity throughout the world. During early atherogenesis, as a result of inflammation and endothelial dysfunction, monocytes transmigrate into the aortic intimal areas, and differentiate into lipid-laden macrophage foam cells, a critical process in atherosclerosis. Numerous natural compounds such as flavonoids and polyphenols are known to have anti-inflammatory and anti-atherogenic properties. Transient receptor potential vanilloid 4 (TRPV4), a non-selective Ca2+-permeant ion channel and a mechanosensor, is widely expressed in diverse cell types including macrophages. Accumulating reports from our laboratory and others on TRPV4 recognized this plasma membrane receptor/channel as an essential modulator of various physiological functions in cardiac, pulmonary, urinary, skeletal, digestive system, and central and peripheral nervous systems. Thus, it is expected that aberrant regulation of TRPV4 activity may lead to multiple pathological conditions such as cardiovascular disease, pulmonary disease, inflammation, neurological disorders, inflammatory bowel disease and wound healing. Previous studies by our group and others have reported that TRPV4 can be activated by numerous mechanical and biochemical stimuli including shear stress, osmolarity, temperature, and growth factors, as well as by alterations in matrix stiffness in vitro and in vivo. Recently, we reported that oxidized low-density lipoprotein-mediated and matrix stiffness-induced macrophage foam cell formation, a critical pathological process in atherosclerosis, is regulated in a TRPV4-dependent manner. Given that TRPV4 is a mechanosensitive channels and mechanical factors like hypertension, disrupted laminar flow of blood, and matrix stiffening are recognized pro-atherogenic factors, makes TRPV4 an important target for therapeutic intervention of atherosclerosis. The objectives of this proposal is to: i) identify natural inhibitor (s) of TRPV4 utilizing a fluorometric imaging plate reader-supported Ca2+ influx assay, ii) functionally characterize the identified compound, and iii) determine the mechanisms by which the identified compound blocks pro-atherogenic/inflammatory TRPV4 activity in macrophages. We expect that the results of this study may strengthen the rationale for the use of natural compounds for developing therapeutic and/or chemopreventive molecules.
    URI
    http://hdl.handle.net/1903/27368
    Collections
    • Nutrition & Food Science Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility