Distinct microbial assemblages associated with genetic selection for high- and low- muscle yield in rainbow trout

Loading...
Thumbnail Image

Files

Date

2020-11-23

Advisor

Citation

Chapagain, P., Walker, D., Leeds, T. et al. Distinct microbial assemblages associated with genetic selection for high- and low- muscle yield in rainbow trout. BMC Genomics 21, 820 (2020).

Abstract

Fish gut microbial assemblages play a crucial role in the growth rate, metabolism, and immunity of the host. We hypothesized that the gut microbiota of rainbow trout was correlated with breeding program based genetic selection for muscle yield. To test this hypothesis, fecal samples from 19 fish representing an F2 high-muscle genetic line (ARS-FY-H) and 20 fish representing an F1 low-muscle yield genetic line (ARS-FY-L) were chosen for microbiota profiling using the 16S rRNA gene. Significant differences in microbial assemblages between these two genetic lines might represent the effect of host genetic selection in structuring the gut microbiota of the host. Tukey’s transformed inverse Simpson indices indicated that high muscle yield genetic line (ARS-FY-H) samples have higher microbial diversity compared to those of the low muscle yield genetic line (ARS-FY-L) (LMM, χ2(1) =14.11, p < 0.05). The fecal samples showed statistically distinct structure in microbial assemblages between the genetic lines (F1,36 = 4.7, p < 0.05, R2 = 11.9%). Functional profiling of bacterial operational taxonomic units predicted characteristic functional capabilities of the microbial communities in the high (ARS-FY-H) and low (ARS-FY-L) muscle yield genetic line samples. The significant differences of the microbial assemblages between high (ARS-FY-H) and low (ARS-FY-L) muscle yield genetic lines indicate a possible effect of genetic selection on the microbial diversity of the host. The functional composition of taxa demonstrates a correlation between bacteria and improving the muscle accretion in the host, probably, by producing various metabolites and enzymes that might aid in digestion. Further research is required to elucidate the mechanisms involved in shaping the microbial community through host genetic selection.

Notes

Rights