Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    CUCURBIT DISEASE MANAGEMENT WITH REDUCED CHLOROTHALONIL AND IMPROVED UNDERSTANDING OF PSEUDOPERONOSPORA CUBENSIS POPULATION DYNAMICS

    Thumbnail
    View/Open
    Jones_umd_0117E_21295.pdf (1.287Mb)
    (RESTRICTED ACCESS)
    No. of downloads: 1

    Date
    2020
    Author
    Jones, Jake Gardner
    Advisor
    Everts, Kathryne L
    DRUM DOI
    https://doi.org/10.13016/7o2o-fooa
    Metadata
    Show full item record
    Abstract
    Research has linked chlorothalonil exposure to declines in pollinator health due to an increased likelihood of Nosema ceranae infection, altered gut microbial community, and a reduction in colony fitness and survival of honey bees (Apis mellifera). Therefore, a reduction in use of chlorothalonil, a large component of cucurbit disease management, may be needed. Without chlorothalonil, a widely used, broad-spectrum fungicide, the fungal and oomycete pathogens in cucurbit cropping systems can more quickly evolve resistance to targeted fungicides due to a limited number of efficacious modes of action and frequent sprays. Pseudoperonospora cubensis, the causal agent of cucurbit downy mildew, for example, has a short life cycle, experiences repeated applications of fungicides, and has a wide host range making it a high risk for fungicide resistance development. Our research focused on the development of an alternative fungicide spray program in melons to reduce the use of chlorothalonil, identifying the fungicide insensitivities of local P. cubensis populations and determining the efficacy of fungicides used to manage cucurbit downy mildew, and investigating the clade-host relationship and formation of oospores in regional P. cubensis samples. Efficacy on two important diseases in melon, powdery mildew and gummy stem blight, can be largely maintained without chlorothalonil but anthracnose control was not adequate without the inclusion of chlorothalonil. Currently, there are a number of highly effective targeted fungicides available to growers for management of cucurbit downy mildew including oxathiapiprolin, zoxamide + chlorothalonil, chlorothalonil, and cyazofamid. Our research shows evidence of P. cubensis clade-host associations, with clade 1 preferentially infecting acorn and summer squash (Cucurbita pepo), butternut squash (Cucurbita moschata), and watermelon (Citrullus lanatus), while clade 2 preferentially infects cucumber (Cucumis sativus). Melons (Cucumis melo) and pumpkin (Cucurbita maxima) are hosts to both clade 1 and clade 2 P. cubensis. Using these findings, producers can choose the fungicide that most appropriately targets the more virulent clade 2 or less virulent clade 1 infections.
    URI
    http://hdl.handle.net/1903/26747
    Collections
    • Plant Science & Landscape Architecture Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility