Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Characterizing 3-dimensional Melt Distribution and Anisotropic Permeability in Sheared Partially Molten Rocks

    Thumbnail
    View/Open
    Bader_umd_0117N_21148.pdf (6.301Mb)
    No. of downloads: 328

    Date
    2020
    Author
    Bader, James A
    Advisor
    Zhu, Wenlu
    Montesi, Laurent
    DRUM DOI
    https://doi.org/10.13016/rcfw-slmc
    Metadata
    Show full item record
    Abstract
    With increasing shear strain, initially homogeneously distributed melt can segregate into an array of melt-rich bands, flanked by melt-poor regions. To address how the formation of these melt-rich bands affects the transport properties of partially molten rocks, I analyzed X-ray synchrotron microtomographic images of an aggregate composed of 10 vol% basaltic melt and 90 vol% olivine that was sheared to a total strain of 13.3. At 0.16 m per pixel, the spatial resolution of the microtomographic dataset is sufficiently high for quantitative characterization of 3-dimensional melt distribution. The results show that the melt distribution is bimodal: in the melt-poor regions, the total melt fractions range from 0.078-0.100, with no interconnected melt; in the melt-rich regions, the total melt fractions range from 0.116 to 0.178, with the interconnected melt fraction ranging from 0.08 to 0.16. The permeability of the sample was calculated using a digital rock physics approach. Along a melt-rich band, permeability (k) as function of melt fraction (ϕ) and grain size (d) can be expressed as k=(ϕ^3.2 d^2)/12.4. Between melt-rich bands, the permeability is negligible. Thus, the permeability of the sheared partially molten rock is highly anisotropic and negligible in the direction perpendicular to the bands. Grain size measurements were obtained through electron backscatter diffraction. After adjusting for grain size, the permeability of a sheared partially molten rock measured along the direction of melt bands is higher than that of its isotropic counterpart with the same bulk melt fraction. The strong anisotropic permeability provides new insight into the effect of melt band formation on melt migration and melt focusing at mid ocean ridges.
    URI
    http://hdl.handle.net/1903/26401
    Collections
    • Geology Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility