Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    ELECTROCHEMISTRY OF PRECISION NANOSTRUCTURES FOR HIGH PERFORMANCE ENERGY STORAGE DEVICES

    View/Open
    Kim_umd_0117E_20614.pdf (7.537Mb)
    (RESTRICTED ACCESS)
    No. of downloads: 0

    Date
    2020
    Author
    Kim, Nam
    Advisor
    Lee, Sang Bok
    DRUM DOI
    https://doi.org/10.13016/4rea-jpae
    Metadata
    Show full item record
    Abstract
    With the increase in the demand for high performing energy storage devices, the energy storage community has explored ways to improve Li-ion battery chemistry. Previous research has demonstrated that nanostructuring of Li-ion electrodes enables significant improvements in their power and energy densities. However, a systematic study is needed to quantify the impact of specific structural properties on the electrochemical behavior of the nanostructured electrode and to develop a guideline for high performance energy storage devices. In the first study of this dissertation, we investigate the impact of pore diameter, dynamic conductivity and interconnected structures on the electrochemistry of V2O5, cathode material for Li ion batteries. We determined that there were positive and negative effects of the interconnected structure depending on the material properties. When V2O5’s electronic conductivity increased with the degree of lithiation, a higher power density was measured with more interconnections. When the material’s electronic conductivity decreased with lithiation, a lower power density was measured with more interconnections. In the second study, we employ microfabrication techniques and atomic layer deposition to fabricate well defined nanochannels to study the effect of electrolyte nanoconfinement on the electrochemistry of anatase TiO2. Surprisingly, nanoconfinement resulted in high energy and power densities when compared to the bulk material. Simulations showed that the improvement in the electrode behavior was due to the negative surface charges of TiO2 which resulted high local concentration of Li ions within the nanochannel and minimal loss in the driving potential was observed at the stern layer. In the third study, we fabricate a platform for high performance 3D solid state batteries on a Si wafer to study the effect of high aspect ratio nanostructures on the electrochemical behavior of thin film solid state batteries. The V2O5 electrode in 3D scaffold showed 113 times higher capacity than the planar electrode at 2μA/cm2 and 1333 times higher capacity at 0.5mA/cm2. These studies can help to understand key structural parameters for improved Li-ion batteries, and the test platforms we developed in these studies can be applied to increase understanding of structural impacts on other ion battery chemistries as well.
    URI
    http://hdl.handle.net/1903/26192
    Collections
    • Chemistry & Biochemistry Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility