Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    LOCAL MOLECULAR FIELD THEORY FOR NON-EQUILIBRIUM SYSTEMS

    Thumbnail
    View/Open
    BakerIII_umd_0117E_20610.pdf (5.721Mb)
    No. of downloads: 249

    Date
    2019
    Author
    Baker III, Edward Bigelow
    Advisor
    Weeks, John D
    DRUM DOI
    https://doi.org/10.13016/i8ra-lz2w
    Metadata
    Show full item record
    Abstract
    Local Molecular Field (LMF) theory is a framework for modeling the long range forces of a statistical system using a mimic system with a modified Hamiltonian that includes a self consistent molecular potential. This theory was formulated in the equilibrium context, being an extension of the Weeks Chandler Andersen (WCA) theory to inhomogeneous systems. This thesis extends the framework further into the nonequilibrium regime. It is first shown that the equilibrium derivation can be generalized readily by using a nonequilibrium ensemble average and its relevant equations of motion. Specifically, the equations of interest are fluid dynamics equations which can be generated as moments of the BBGKY hierarchy. Although this approach works well, for the application to simulations it is desirable to approximate the LMF potential dynamically during a single simulation, instead of a nonequilibrium ensemble. This goal was pursued with a variety of techniques, the most promising of which is a nonequilibrium force balance approach to dynamically approximate the relevant ensemble averages. This method views a quantity such as the particle density as a field, and uses the statistical equations of motion to propagate the field, with the forces in the equations computed from simulation. These results should help LMF theory become more useful in practice, in addition to furthering the theoretical understanding of near equilibrium molecular fluids.
    URI
    http://hdl.handle.net/1903/26188
    Collections
    • Chemistry & Biochemistry Theses and Dissertations
    • Physics Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility